《函数之妙——lnx/x》
夫函数者,变化之理,天地之数也。前已述函数 lnx/x 之特性,今当续而论之,以启众人之智。
且看此函数,形如 lnx 除以 x。先思 lnx 之性,对数之象,乃示指数之逆。x 者,变数也,代表世间万物之多寡。二者相除,其义深远。
当论其定义域。lnx 之定义域为 x 大于零,故 lnx/x 之定义域亦为 x 大于零。此乃其存在之域,不可不察。
观其单调性。欲求其单调性,可求其导数。令 f(x)=lnx/x,则 f'(x)=(1-lnx)/x2。当 f'(x)>0 时,函数递增;当 f'(x)<0 时,函数递减。
解 f'(x)=(1-lnx)/x2>0,即 1-lnx>0,lnx<1,解得 0<x<e。故当 0<x<e 时,函数 f(x)=lnx/x 单调递增;当 x>e 时,函数单调递减。
由此可知,e 乃此函数单调性之关键。当 x 趋近于零时,lnx 趋近于负无穷,而 x 趋近�
更多内容加载中...请稍候...
本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!